35 research outputs found

    Time-domain anyon interferometry in Kitaev honeycomb spin liquids and beyond

    Get PDF
    Motivated by recent experiments on the Kitaev honeycomb magnet α-RuCl₃, we introduce time-domain probes of the edge and quasiparticle content of non-Abelian spin liquids. Our scheme exploits ancillary quantum spins that communicate via time-dependent tunneling of energy into and out of the spin liquid's chiral Majorana edge state. We show that the ancillary-spin dynamics reveals the edge-state velocity and, in suitable geometries, detects individual non-Abelian anyons and emergent fermions via a time-domain counterpart of quantum-Hall anyon interferometry. We anticipate applications to a wide variety of topological phases in solid-state and cold-atoms settings

    Pretreatment Effects on the Uptake/Retention Kinetics of L-Dopa in Harding-Passey Melanoma

    Get PDF
    Malignant melanoma cells possess a unique biochemical pathway that converts L-3,4-dihydroxyphenylalanine (L-dopa) to the biopigment melanin. Selective cytotoxic incorporation of exogenous L-dopa into melanoma cells in vivo may provide a means of designing specific chemotherapeutic agents useful in the treatment of this disease. Using the Harding-Passey murine melanotic tumor model, a preferential uptake of [3H]L-dopa by the tumor was characterized. Following pretreatment of the tumor-bearing mice with nonradioactive L-dopa, a significant enhancement (p < 0.01) of [3H]L-dopa incorporation and retention into melanoma for a period of 24h was observed, when compared with the concomitant tissue distribution and clearance of radioactivity in the control animals. This finding suggests that by initial pretreatment of melanoma with nonradioactive L-dopa, the subsequent selective accumulation of [3H]L-dopa in tumor may provide a useful tool in testing new modalities of therapy in malignant melanoma

    CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison

    Full text link
    Large, labeled datasets have driven deep learning methods to achieve expert-level performance on a variety of medical imaging tasks. We present CheXpert, a large dataset that contains 224,316 chest radiographs of 65,240 patients. We design a labeler to automatically detect the presence of 14 observations in radiology reports, capturing uncertainties inherent in radiograph interpretation. We investigate different approaches to using the uncertainty labels for training convolutional neural networks that output the probability of these observations given the available frontal and lateral radiographs. On a validation set of 200 chest radiographic studies which were manually annotated by 3 board-certified radiologists, we find that different uncertainty approaches are useful for different pathologies. We then evaluate our best model on a test set composed of 500 chest radiographic studies annotated by a consensus of 5 board-certified radiologists, and compare the performance of our model to that of 3 additional radiologists in the detection of 5 selected pathologies. On Cardiomegaly, Edema, and Pleural Effusion, the model ROC and PR curves lie above all 3 radiologist operating points. We release the dataset to the public as a standard benchmark to evaluate performance of chest radiograph interpretation models. The dataset is freely available at https://stanfordmlgroup.github.io/competitions/chexpert .Comment: Published in AAAI 201

    Universal Topological Quantum Computation from a Superconductor-Abelian Quantum Hall Heterostructure

    Get PDF
    Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Green’s observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p+ip superconductor both support so-called Ising non-Abelian anyons. Here, we establish a similar correspondence between the Z_3 Read-Rezayi quantum Hall state and a novel two-dimensional superconductor in which charge-2e Cooper pairs are built from fractionalized quasiparticles. In particular, both phases harbor Fibonacci anyons that—unlike Ising anyons—allow for universal topological quantum computation solely through braiding. Using a variant of Teo and Kane’s construction of non-Abelian phases from weakly coupled chains, we provide a blueprint for such a superconductor using Abelian quantum Hall states interlaced with an array of superconducting islands. Fibonacci anyons appear as neutral deconfined particles that lead to a twofold ground-state degeneracy on a torus. In contrast to a p+ip superconductor, vortices do not yield additional particle types, yet depending on nonuniversal energetics can serve as a trap for Fibonacci anyons. These results imply that one can, in principle, combine well-understood and widely available phases of matter to realize non-Abelian anyons with universal braid statistics. Numerous future directions are discussed, including speculations on alternative realizations with fewer experimental requirements

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Advances In Radiologic Imaging Of Neonatal Airway Disorders

    No full text
    Radiology of the airways in newborns and infants is challenging due the small size of their anatomy, their inability to follow breathing instructions, and the concern for long-term effects of radiation exposure. While some patients can be managed with observation or empiric therapy, for other patients the diagnosis may remain uncertain, and imaging is an essential part of management. Radiology serves to detect airway abnormalities, guide therapy, assist with preoperative planning, and help avoid invasive testing
    corecore